Bài viết này trích lược một số công thức nhanh hay dùng cho khối tứ diện. Các công thức nhanh khác liên quan đến thể tích khối tứ diện và thể tích khối lăng trụ bạn đọc tham khảo khoá COMBO X do Vted phát hành tại đây https://vted.vn/khoa-hoc/nhom/combo-4-khoa-luyen-thi-thpt-quoc-gia-2023-mon-toan-danh-cho-teen-2k5-18
Công thức tổng quát: Khối tứ diện $ABCD$ có $BC=a,CA=b,AB=c,AD=d,BD=e,CD=f$ ta có công thức tính thể tích của tứ diện theo sáu cạnh như sau: \[V=\dfrac{1}{12}\sqrt{M+N+P-Q},\] trong đó \[\begin{align} & M={{a}^{2}}{{d}^{2}}({{b}^{2}}+{{e}^{2}}+{{c}^{2}}+{{f}^{2}}-{{a}^{2}}-{{d}^{2}}) \\ & N={{b}^{2}}{{e}^{2}}({{a}^{2}}+{{d}^{2}}+{{c}^{2}}+{{f}^{2}}-{{b}^{2}}-{{e}^{2}}) \\ & P={{c}^{2}}{{f}^{2}}({{a}^{2}}+{{d}^{2}}+{{b}^{2}}+{{e}^{2}}-{{c}^{2}}-{{f}^{2}}) \\ & Q={{(abc)}^{2}}+{{(aef)}^{2}}+{{(bdf)}^{2}}+{{(cde)}^{2}} \\ \end{align}\]
Khối tứ diện đều cạnh $a,$ ta có $V=\dfrac{{{a}^{3}}\sqrt{2}}{12}.$
Ví dụ 1: Cho tứ diện đều có chiều cao bằng \[h\]. Thể tích của khối tứ diện đã cho là
A. \[V=\dfrac{\sqrt{3}{{h}^{3}}}{4}\].
B. \[V=\dfrac{\sqrt{3}{{h}^{3}}}{8}\].
C. \[V=\dfrac{\sqrt{3}{{h}^{3}}}{3}\].
D. \[V=\dfrac{2\sqrt{3}{{h}^{3}}}{3}\].
Giải. Thể tích tứ diện đều cạnh $a$ là $V=\frac{\sqrt{2}{{a}^{3}}}{12}.$
Chiều cao tứ diện đều là $h=\frac{3V}{S}=\frac{3\left( \frac{\sqrt{2}{{a}^{3}}}{12} \right)}{\frac{\sqrt{3}{{a}^{2}}}{4}}=\sqrt{\frac{2}{3}}a\Rightarrow a=\sqrt{\frac{3}{2}}h.$
Vì vậy $V=\frac{\sqrt{2}}{12}{{\left( \sqrt{\frac{3}{2}}h \right)}^{3}}=\frac{\sqrt{3}{{h}^{3}}}{8}.$ Chọn đáp án B.
Với tứ diện $ABCD$ có $AB,AC,AD$ đôi một vuông góc và $AB=a,AC=b,AD=c,$ ta có $V=\dfrac{1}{6}abc.$
Với tứ diện $ABCD$ có $AB=CD=a,BC=AD=b,AC=BD=c$ ta có \[V=\dfrac{\sqrt{2}}{12}.\sqrt{({{a}^{2}}+{{b}^{2}}-{{c}^{2}})({{b}^{2}}+{{c}^{2}}-{{a}^{2}})({{a}^{2}}+{{c}^{2}}-{{b}^{2}})}.\]
Giải. Ta có ${{V}_{ABCD}}=\frac{\sqrt{2}}{12}\sqrt{({{8}^{2}}+{{5}^{2}}-{{7}^{2}})({{5}^{2}}+{{7}^{2}}-{{8}^{2}})({{7}^{2}}+{{8}^{2}}-{{5}^{2}})}=\frac{20\sqrt{11}}{3}.$ Chọn đáp án B.
Giải. Ta có ${{V}_{AMCD}}=\frac{AM}{AB}{{V}_{ABCD}}=\frac{1}{2}{{V}_{ABCD}}=\frac{\sqrt{2}}{24}\sqrt{({{8}^{2}}+{{5}^{2}}-{{7}^{2}})({{5}^{2}}+{{7}^{2}}-{{8}^{2}})({{7}^{2}}+{{8}^{2}}-{{5}^{2}})}=\frac{10\sqrt{11}}{3}.$
Tam giác $MCD$ có $CD=8$ và theo công thức đường trung tuyến ta có:
$MC=\sqrt{\frac{2(C{{A}^{2}}+C{{B}^{2}})-A{{B}^{2}}}{4}}=\sqrt{\frac{2({{7}^{2}}+{{5}^{2}})-{{8}^{2}}}{4}}=\sqrt{21}.$
và $MD=\sqrt{\frac{2(D{{A}^{2}}+D{{B}^{2}})-A{{B}^{2}}}{4}}=\sqrt{\frac{2({{5}^{2}}+{{7}^{2}})-{{8}^{2}}}{4}}=\sqrt{21}.$
Vậy ${{S}_{MCD}}=4\sqrt{5}.$ Do đó $d(A,(MCD))=\frac{3{{V}_{AMCD}}}{{{S}_{MCD}}}=\frac{10\sqrt{11}}{4\sqrt{5}}=\frac{\sqrt{55}}{2}.$ Chọn đáp án B.
A. $\sqrt{95}{{a}^{3}}.$
B. $8\sqrt{95}{{a}^{3}}.$
C. $2\sqrt{95}{{a}^{3}}.$
D. $4\sqrt{95}{{a}^{3}}.$
Giải. Áp dụng công thức tính thể tích khối tứ diện gần đều có
${{V}_{ABCD}}=\dfrac{\sqrt{2}}{12}\sqrt{\left( {{5}^{2}}+{{6}^{2}}-{{7}^{2}} \right)\left( {{6}^{2}}+{{7}^{2}}-{{5}^{2}} \right)\left( {{7}^{2}}+{{5}^{2}}-{{6}^{2}} \right)}{{a}^{3}}=2\sqrt{95}{{a}^{3}}.$
Chọn đáp án C.
Xem thêm tại đây: https://www.vted.vn/tin-tuc/cong-thuc-tong-quat-tinh-the-tich-cua-mot-khoi-tu-dien-bat-ki-va-cac-truong-hop-dac-biet-4345.html
Tứ diện $ABCD$ có $AD=a,BC=b,d(AD,BC)=d,(AD,BC)=\alpha ,$ ta có $V=\dfrac{1}{6}abd\sin \alpha .$
A. $3\sqrt{2}.$
B. $2\sqrt{3}.$
C. $6\sqrt{3}.$
D. $6\sqrt{2}.$
Giải. Gọi $a,b$ lần lượt là khoảng cách từ tâm $I$ đến hai đường thẳng $AB,CD.$
Ta có $AB=2\sqrt{R_{1}^{2}-{{a}^{2}}}=2\sqrt{4-{{a}^{2}}};CD=2\sqrt{R_{2}^{2}-{{b}^{2}}}=2\sqrt{10-{{b}^{2}}}$ và $d(AB,CD)\le d(I,AB)+d(I,CD)=a+b$ và $\sin (AB,CD)\le 1.$
Do đó áp dụng công thức tính thể tích tứ diện theo khoảng cách chéo nhau của cặp cạnh đối diện có:
$\begin{gathered} {V_{ABCD}} = \frac{1}{6}AB.CD.d(AB,CD).\sin (AB,CD) \leqslant \frac{2}{3}(a + b)\sqrt {4 - {a^2}} \sqrt {10 - {b^2}} \\ = \frac{2}{3}\left( {a\sqrt {4 - {a^2}} \sqrt {10 - {b^2}} + b\sqrt {10 - {b^2}} \sqrt {4 - {a^2}} } \right) = \frac{2}{3}\left( {\sqrt {4{a^2} - {a^4}} \sqrt {10 - {b^2}} + \sqrt {\frac{{10{b^2} - {b^4}}}{2}} \sqrt {8 - 2{a^2}} } \right) \\ \leqslant \frac{2}{3}\sqrt {\left( {4{a^2} - {a^4} + 8 - 2{a^2}} \right)\left( {10 - {b^2} + \frac{{10{b^2} - {b^4}}}{2}} \right)} = \frac{2}{3}\sqrt {\left( { - {{({a^2} - 1)}^2} + 9} \right)\left( { - \frac{1}{2}{{({b^2} - 4)}^2} + 18} \right)} \leqslant \frac{2}{3}\sqrt {9.18} = 6\sqrt 2 . \\ \end{gathered} $
Dấu bằng đạt tại $(a;b)=(1;2).$ Chọn đáp án D.
A. $\frac{{{a}^{3}}}{12}.$
B. $\frac{{{a}^{3}}\sqrt{3}}{6}.$
C. $\frac{{{a}^{3}}}{6}.$
D. $\frac{{{a}^{3}}\sqrt{3}}{12}.$
Có $h=2r=a;{{V}_{ABCD}}=\frac{1}{6}AB.CD.d(AB,CD).\sin (AB,CD)=\frac{1}{3}.2r.2r.h.\sin {{30}^{0}}=\frac{{{a}^{3}}}{6}.$ Chọn đáp án C.
A. $86,8\text{ }d{{m}^{3}}.$
B. $237,6\text{ }d{{m}^{3}}.$
C. $338,6\text{ }d{{m}^{3}}.$
D. $109,6\text{ }d{{m}^{3}}.$
Giải. Áp dụng công thức tính thể tích tứ diện theo khoảng cách và góc giữa cặp cạnh đối ta có
${{V}_{MNPQ}}=\dfrac{1}{6}MN.PQ.d\left( MN,PQ \right).\sin \left( MN,PQ \right)=\dfrac{1}{6}.2r.2r.h.\sin {{90}^{0}}=\dfrac{2}{3}{{r}^{2}}h=\dfrac{2}{3\pi }V{{T}_{T}}$
Thể tích lượng đá bị cắt bỏ là ${{V}_{T}}-{{V}_{MNPQ}}=\left( \dfrac{3\pi }{2}-1 \right){{V}_{MNPQ}}\approx 237,6\text{ d}{{\text{m}}^{\text{3}}}.$ Chọn đáp án B.
A. ${{a}^{3}}.$
B. $\frac{{{a}^{3}}}{3}.$
C. $\frac{{{a}^{3}}}{2}.$
D. $\frac{{{a}^{3}}}{6}.$
Lời giải chi tiết. Gọi $H=\mathbf{h/c(S,(ABC))}$ ta có $\left\{ \begin{gathered} AB \bot SB \hfill \\ AB \bot SH \hfill \\ \end{gathered} \right. \Rightarrow AB \bot (SBH) \Rightarrow AB \bot BH;\left\{ \begin{gathered} AC \bot SC \hfill \\ AC \bot SH \hfill \\ \end{gathered} \right. \Rightarrow AC \bot (SCH) \Rightarrow AC \bot CH.$ Kết hợp với $ABC$ là tam giác vuông cân tại $A,AB=a$ suy ra $ABHC$ là hình vuông.
Đặt $h=SH\Rightarrow {{V}_{S.ABC}}=\frac{1}{3}{{S}_{ABC}}.SH=\frac{{{a}^{2}}h}{6}(1).$
Mặt khác ${{V}_{S.ABC}}=\frac{2{{S}_{SAB}}.{{S}_{SAC}}.\sin \left( (SAB),(SAC) \right)}{3SA}=\frac{2\left( \frac{a\sqrt{{{a}^{2}}+{{h}^{2}}}}{2} \right)\left( \frac{a\sqrt{{{a}^{2}}+{{h}^{2}}}}{2} \right)\frac{\sqrt{3}}{2}}{3\sqrt{2{{a}^{2}}+{{h}^{2}}}}(2).$
Từ (1) và (2) suy ra $h=a\Rightarrow V=\frac{{{a}^{3}}}{6}.$ Chọn đáp án D.
A. $\frac{{{a}^{3}}}{3}.$
B. ${{a}^{3}}.$
C. $\frac{2{{a}^{3}}}{3}.$
D. $3{{a}^{3}}.$
Lời giải chi tiết. Gọi $H=\mathbf{h/c(A,(BCD))}.$ Đặt $AH=h\Rightarrow {{V}_{ABCD}}=\frac{1}{3}{{S}_{BCD}}.AH=\frac{1}{3}.\frac{1}{2}CB.CD.AH=\frac{{{a}^{2}}h}{3}(1).$
Ta có $\left\{ \begin{gathered} CB \bot BA \hfill \\ CB \bot AH \hfill \\ \end{gathered} \right. \Rightarrow CB \bot (ABH) \Rightarrow CB \bot HB.$ Tương tự $\left\{ \begin{gathered} CD \bot DA \hfill \\ CD \bot AH \hfill \\ \end{gathered} \right. \Rightarrow CD \bot (ADH) \Rightarrow CD \bot HD.$
Kết hợp với $\widehat{BCD}={{90}^{0}}\Rightarrow HBCD$ là hình chữ nhật.
Suy ra $AB=\sqrt{A{{H}^{2}}+H{{B}^{2}}}=\sqrt{{{h}^{2}}+4{{a}^{2}}},AD=\sqrt{A{{H}^{2}}+H{{D}^{2}}}=\sqrt{{{h}^{2}}+{{a}^{2}}};AC=\sqrt{A{{B}^{2}}+B{{C}^{2}}}=\sqrt{{{h}^{2}}+5{{a}^{2}}}.$
Suy ra ${{S}_{ABC}}=\frac{1}{2}AB.BC=\frac{a\sqrt{{{h}^{2}}+4{{a}^{2}}}}{2};{{S}_{ACD}}=\frac{1}{2}AD.DC=a\sqrt{{{h}^{2}}+{{a}^{2}}}.$
Suy ra ${{V}_{ABCD}}=\frac{2{{S}_{ABC}}.{{S}_{ACD}}.\sin \left( (ABC),(ACD) \right)}{3AC}=\frac{{{a}^{2}}\sqrt{{{h}^{2}}+4{{a}^{2}}}\sqrt{{{h}^{2}}+{{a}^{2}}}}{3\sqrt{{{h}^{2}}+5{{a}^{2}}}}\sqrt{1-{{\left( \frac{\sqrt{130}}{65} \right)}^{2}}}(2).$
Kết hợp (1), (2) suy ra: $h=3a\Rightarrow {{V}_{ABCD}}={{a}^{3}}.$ Chọn đáp án B.
Ví dụ 3: Cho hình chóp $S.ABCD$ có đáy là hình thoi cạnh $a,\widehat{ABC}={{120}^{0}}.$ Cạnh bên $SA$ vuông góc với đáy và góc giữa hai mặt phẳng $(SBC),(SCD)$ bằng ${{60}^{0}},$ khi đó $SA$ bằng
A. $\dfrac{\sqrt{6}a}{4}.$
B. $\sqrt{6}a.$
C. $\dfrac{\sqrt{6}a}{2}.$
D. $\dfrac{\sqrt{3}a}{2}.$
Có $SA=x>0\Rightarrow {{V}_{S.BCD}}=\dfrac{1}{3}{{S}_{BCD}}.SA=\dfrac{\sqrt{3}x}{12}(1),\left( a=1 \right).$
Mặt khác ${{V}_{S.BCD}}=\dfrac{2{{S}_{SBC}}.{{S}_{SCD}}.\sin \left( (SBC),(SCD) \right)}{3SC}=\dfrac{2{{\left( \dfrac{\sqrt{4{{x}^{2}}+3}}{4} \right)}^{2}}\dfrac{\sqrt{3}}{2}}{3\sqrt{{{x}^{2}}+3}}(2).$
Trong đó $BC=1,SB=\sqrt{{{x}^{2}}+1},SC=\sqrt{{{x}^{2}}+3}\Rightarrow {{S}_{SBC}}=\dfrac{\sqrt{4{{x}^{2}}+3}}{4};\Delta SBC=\Delta SDC(c-c-c)\Rightarrow {{S}_{SCD}}=\dfrac{\sqrt{4{{x}^{2}}+3}}{4}.$
Từ (1) và (2) suy ra \[x=\dfrac{\sqrt{6}}{4}.\] Chọn đáp án A.
A. $\dfrac{{{a}^{3}}}{8}.$
B. $\dfrac{{{a}^{3}}\sqrt{2}}{12}.$
C. $\dfrac{{{a}^{3}}\sqrt{3}}{8}.$
D. $\dfrac{{{a}^{3}}\sqrt{3}}{12}.$
Có ${{V}_{ABCD}}=\dfrac{2{{S}_{ABC}}{{S}_{ABD}}\sin \left( (ABC),(ABD) \right)}{3AB}=\dfrac{2\left( \dfrac{\sqrt{3}{{a}^{2}}}{4} \right)\left( \dfrac{\sqrt{3}{{a}^{2}}}{4} \right)}{3a}\sin \left( (ABC),(ABD) \right)\le \dfrac{2\left( \dfrac{\sqrt{3}{{a}^{2}}}{4} \right)\left( \frac{\sqrt{3}{{a}^{2}}}{4} \right)}{3a}=\dfrac{{{a}^{3}}}{8}.$
Dấu bằng đạt tại $(ABC)\bot (ABD).$ Chọn đáp án A.
Ví dụ 5: Cho lăng trụ $ABC.{A}'{B}'{C}'$ có diện tích tam giác ${A}'BC$ bằng $4,$ khoảng cách từ $A$ đến $BC$ bằng $3,$ góc giữa hai mặt phẳng $\left( {A}'BC \right)$ và $\left( {A}'{B}'{C}' \right)$ bằng $30{}^\circ .$ Thể tích khối lăng trụ $ABC.{A}'{B}'{C}'$ bằng
A. $3\sqrt{3}.$ B. $6.$ C. $2.$ D. $12.$
Giải. Áp dụng công thức tính thể tích tứ diện cho trường hợp biết góc và diện tích của hai mặt
${{V}_{ABC.{A}'{B}'{C}'}}=3{{V}_{{A}'.ABC}}=3\left( \dfrac{2{{S}_{{A}'BC}}.{{S}_{ABC}}.\sin \left( \left( {A}'BC \right),\left( ABC \right) \right)}{3BC} \right)$
$=\dfrac{{{S}_{{A}'BC}}.d\left( A,BC \right).BC.\sin \left( \left( {A}'BC \right),\left( ABC \right) \right)}{BC}={{S}_{{A}'BC}}.d\left( A,BC \right).\sin \left( \left( {A}'BC \right),\left( ABC \right) \right)=4.3.\dfrac{1}{2}=6.$ Chọn đáp án B.
Khối chóp $S.{{A}_{1}}{{A}_{2}}...{{A}_{n}}$ có $V=\dfrac{2{{S}_{S{{A}_{1}}{{A}_{2}}}}.{{S}_{{{A}_{1}}{{A}_{2}}...{{A}_{n}}}}.\sin \left( (S{{A}_{1}}{{A}_{2}}),({{A}_{1}}{{A}_{2}}...{{A}_{n}}) \right)}{3{{A}_{1}}{{A}_{2}}}.$
Khối chóp $S.ABC$ có $SA=a,SB=b,SC=c,\widehat{BSC}=\alpha ,\widehat{CSA}=\beta ,\widehat{ASA}=\gamma .$
Khi đó $V=\dfrac{abc}{6}\sqrt{1+2\cos \alpha \cos \beta \cos \gamma -{{\cos }^{2}}\alpha -{{\cos }^{2}}\beta -{{\cos }^{2}}\gamma }.$
A. $\dfrac{8{{a}^{3}}\sqrt{2}}{3}.$
B. $\dfrac{2{{a}^{3}}\sqrt{2}}{3}.$
C. $\dfrac{{{a}^{3}}\sqrt{2}}{3}.$
D. $\dfrac{4{{a}^{3}}\sqrt{2}}{3}.$
Giải. Áp dụng công thức tính thể tích tứ diện theo các góc tại một đỉnh ta có
${{V}_{S.ABC}}=\dfrac{1}{6}SA.SB.SC\sqrt{1+2\cos \widehat{ASB}\cos \widehat{BSC}\cos \widehat{CSA}-{{\cos }^{2}}\widehat{ASB}-{{\cos }^{2}}\widehat{BSC}-{{\cos }^{2}}\widehat{CSA}}$
$=\dfrac{1}{6}a.2a.4a\sqrt{1+2\left( \dfrac{1}{2} \right)\left( \dfrac{1}{2} \right)\left( \dfrac{1}{2} \right)-{{\left( \dfrac{1}{2} \right)}^{2}}-{{\left( \dfrac{1}{2} \right)}^{2}}-{{\left( \dfrac{1}{2} \right)}^{2}}}=\dfrac{2\sqrt{2}}{3}{{a}^{3}}.$
Chọn đáp án B.
https://vted.vn/tin-tuc/cong-thuc-tong-quat-tinh-the-tich-cua-mot-khoi-tu-dien-bat-ki-va-cac-truong-hop-dac-biet-4345.html
Cách 2:
A. $10\sqrt{2}{{a}^{3}}.$
B. $15\sqrt{2}{{a}^{3}}.$
C. $5\sqrt{2}{{a}^{3}}.$
D. $30\sqrt{2}{{a}^{3}}.$
Giải. Ta có ${{V}_{ABC.{A}'{B}'{C}'}}=3{{V}_{{A}'.ABC}}$ và áp dụng công thức tính thể tích khối tứ diện theo các góc tại một đỉnh ta được
$=3.\dfrac{1}{6}{A}'A.{A}'B.{A}'C\sqrt{1+2\cos \widehat{A{A}'B}\cos \widehat{B{A}'C}\cos \widehat{C{A}'A}-{{\cos }^{2}}\widehat{A{A}'B}-{{\cos }^{2}}\widehat{B{A}'C}-{{\cos }^{2}}\widehat{C{A}'A}}$
$=\dfrac{1}{2}.3a.4a.5a\sqrt{1+2{{\left( \dfrac{1}{2} \right)}^{3}}-3{{\left( \dfrac{1}{2} \right)}^{2}}}=15\sqrt{2}{{a}^{3}}.$ Chọn đáp án B.
A. $20.$
B. $5.$
C. $15.$
D. $10.$
Giải. Tứ diện này có độ dài tất cả các cạnh ta tính các góc tại một đỉnh rồi áp dụng công thức thể tích khối tứ diện dựa trên 3 góc xuất phát từ cùng 1 đỉnh:
Có $\left\{ \begin{gathered}\hfill \cos \widehat{BAD}=\dfrac{A{{B}^{2}}+A{{D}^{2}}-B{{D}^{2}}}{2AB.AD}=\sqrt{\dfrac{2}{11}} \\ \hfill \cos \widehat{DAC}=\dfrac{A{{D}^{2}}+A{{C}^{2}}-C{{D}^{2}}}{2AD.AC}=\dfrac{5}{2\sqrt{11}} \\ \hfill \cos \widehat{CAB}=\dfrac{A{{C}^{2}}+A{{B}^{2}}-B{{C}^{2}}}{2AC.AB}=\dfrac{1}{\sqrt{2}} \\ \end{gathered} \right..$
Vì vậy ${{V}_{ABCD}}=\dfrac{1}{6}.5.2\sqrt{2}.\sqrt{22}\sqrt{1+2\sqrt{\dfrac{2}{11}}\dfrac{5}{2\sqrt{11}}\dfrac{1}{\sqrt{2}}-{{\left( \sqrt{\dfrac{2}{11}} \right)}^{2}}-{{\left( \dfrac{5}{2\sqrt{11}} \right)}^{2}}-{{\left( \dfrac{1}{\sqrt{2}} \right)}^{2}}}=5.$
Chọn đáp án B.
>>Xem thêm Tổng hợp tất cả các công thức tính nhanh bán kính mặt cầu ngoại tiếp khối đa diện