Đường trung tuyến của tam giác là đường thẳng nối trung điểm của hai cạnh tam giác, đây là một trong những kiến thức cơ bản yêu cầu học sinh phải nắm vững để có thể áp dụng vào bài tập và những bài kiểm tra. Nếu như các bạn có lỡ quên thì cũng đừng lo lắng nhé, vì bài viết này sẽ giúp các bạn ôn lại những kiến thức tổng quát về đường trung tuyến và những dạng toán thường gặp của đường trung tuyến. Cùng tìm hiểu ngay nhé:
Công thức tính đường trung tuyến:
Cho a, b, c lần lượt là độ dài 3 cạnh của tam giác, độ dài 3 đường trung tuyến ta có thể tính bằng cách áp dụng định lý Apollonius như sau:
Bài tập 1: Cho tam giác ABC với G là trọng tâm. Trên cạnh AG lấy điểm G’ sao cho G là trung điểm của đoạn AG’. Yêu cầu so sánh:
Bài giải:
a. Ta có BG cắt AC tại điểm N, CG cắt AB tại điểm E và G là trọng tâm của tam giác ABC.
=> GA = ⅔ AM
Vì G là trung điểm của AG’ => GA =GG’
Suy ra: GG’ = ⅔ AM
Theo giả thuyết ta có G là trọng tâm của tam giác ABC
=> GB = ⅔ BN
Mặt khác: GM = ½ AG (vì G là trọng tâm)
AG = GG’ => GM = ½ GG’
M là trung điểm của đoạn GG’
Vì GM = MG’ và MB = Mc => tam giác GMC = tam giác G’MB
Suy ra: BG’ = CG
Mà CG = ⅔ CE (G là trọng tâm của tam giác ABC)
=> BG’ = ⅔ CE
Vậy mỗi cạnh của tam giác BGG’ bằng ⅔ các đường trung tuyến của tam giác ABC.
b. Ta có BM là đường trung tuyến của tam giác BGG’
mà điểm M lại là trung điểm của đoạn BC nên BM = ½ BC
I là trung điểm của BG => IG = ½ BG
G là trọng tâm tam giác ABC => GN = ½ BG
Suy ra: IG = GN
=> tam giác IGG’ = tam giác NGA theo trường hợp cạnh.góc.cạnh
=>IG’ = AN =>IG’ = ½ AC
Gọi K là trung điểm của đoạn BG => GK là trung tuyến của tam giác BGG’
Mặt khác, vì G là trọng tâm của tam giác ABC => GE = ½ GC
Mà K là trung điểm của BG’ => KG” = EG
Vì tam giác GMC = tam giác G’BM (chứng minh trên)
=> tam giác GCM = tam giác G’BM theo trường hợp góc so le trong
=>CE//BG => tam giác AGE = tam giác AG’B theo trường hợp đồng vị
Do đó tam giác AGE = tam giác GG’K (c.g.c) => AE = GK
Mà AE = ½ AB nên GK = ½ AB
Vậy mỗi đường trung tuyến của tam giác BGG’ bằng ½ các cạnh của tam giác ABC.
Bài tập 2: Cho tam giác ABC có 2 đường đường trung truyến AA’ và BB’ cắt nhau tại điểm O. Yêu cầu: Tính diện tích tam giác ABC, biết diện tích tam giác AOB bằng 5(đvdt)
ĐÁP ÁNBài giải:
Ta có:
S(AOB) = ⅔ S(AA’B) (vì AO = ⅔ AA’)
S(ABA’) = ½ S(ABC) (vì BA’ = ½ BC)
Từ đó suy ra: S(ABC) = 2S(ABA’) = 3S(AOB)
Theo đề bài ta có: S(AOB) = 5(đvdt) => S(ABC) = 3.5 =15(đvdt).
Bên trên là kiến thức tổng quát về đường trung tuyến của tam giác và một số dạng toán liên quan. Hy vọng bài viết chia sẻ của VOH Giáo dục có thể giúp ích cho các em học sinh hệ thống kiến thức về đường trung tuyến phục vụ trong quá trình học tập.
Link nội dung: https://iir.edu.vn/duong-trung-tuyen-la-gi-tinh-chat-dang-toan-ve-duong-trung-tuyen-cua-tam-giac-a18126.html