Góc Giữa 2 Mặt Phẳng: Định Nghĩa, Cách Xác Định Và Bài Tập

1. Lý thuyết góc giữa 2 mặt phẳng trong không gian

1.1. Góc giữa 2 mặt phẳng là gì?

Góc giữa 2 mặt phẳng chính là góc được tạo bởi 2 đường thẳng lần lượt vuông góc với hai mặt phẳng đó.

Trong không gian 3 chiều, góc giữa 2 mặt phẳng lại được gọi là "góc khối" bởi đó là phần không gian bị giới hạn bởi 2 mặt phẳng. Góc giữa 2 mặt phẳng thường được đo bằng góc giữa 2 đường thẳng trên 2 mặt phẳng và chúng có cùng trực giao với giao tuyến của 2 mặt phẳng.

1.2. Tính chất của góc giữa 2 mặt phẳng

2. Các cách xác định góc giữa 2 mặt phẳng không gian

2.1. Phương pháp 1: Dựng đường thẳng vuông góc

Với phương pháp này các em cần dựng một mặt phẳng phụ (R) vuông góc với giao tuyến c, trong đó (Q) giao với (R) = a, (P) giao với (R) = b.

Góc Giữa 2 Mặt Phẳng: Định Nghĩa, Cách Xác Định Và Bài Tập

2.2. Phương pháp 2: Xác định giao tuyến giữa 2 mặt phẳng

Để tìm giao tuyến của 2 mặt phẳng \alpha\beta ta cần thực hiện 2 bước như sau:

Bước 1: Tìm 2 điểm chung A,B của \alpha\beta

Bước 2: Ta có đường thẳng AB chính là giao tuyến cần tìm AB = \alpha\cap\beta

Góc Giữa 2 Mặt Phẳng: Định Nghĩa, Cách Xác Định Và Bài Tập

Lưu ý: Muốn tìm được \alpha) và \beta, cần tìm 2 đường thẳng đồng phẳng mà trong đó \alpha\beta lần lượt nằm trong 2 mặt phẳng giao điểm.

Tổng ôn kiến thức và phương pháp giải mọi dạng bài tập Toán 12 với bộ bí kíp độc quyền của VUIHOC ngay!

Góc Giữa 2 Mặt Phẳng: Định Nghĩa, Cách Xác Định Và Bài Tập

3. Cách tính góc giữa 2 mặt phẳng dễ hiểu nhất

3.1. Cách 1: Vận dụng hệ thức lượng trong tam giác vuông

Với cách tính này, các em sẽ sử dụng hệ thức lượng trong tam giác vuông và định lý hàm số sin, cos.

Ví dụ: Cho hình chóp SABC có đáy ABC là tam giác vuông cân tại A, cạnh BC = 2a, cạnh SA vuông góc với mặt phẳng đáy (ABC), SA = a. Xác định và tính số đo góc giữa hai mặt phẳng (SBC) và (ABC).

Giải:

Góc Giữa 2 Mặt Phẳng: Định Nghĩa, Cách Xác Định Và Bài Tập

Pháp tuyến của hai mặt phẳng (SBC) và (ABC) là: SBC \cap ABC = BC

Từ chân đường vuông góc A kẻ AH \perp BC

Vì SA \perp ABC \Rightarrow SA \perp BC, AH \perp BC \Rightarrow BC \perp SAH \Rightarrow BC \perp SH

Vậy ta tìm được 2 đường thẳng SH, AH lần lượt nằm trong 2 mặt phẳng và vuông góc với BC tại H

3.2. Cách 2: Dựng mặt phẳng phụ

Để tính được góc giữa 2 mặt phẳng các em có thể dựng thêm mặt phẳng phụ. Hãy tham khảo trong ví dụ sau đây nhé!

Ví dụ: Cho hình chóp S.ABCD, cạnh đáy ABCD là nửa lục giác đều nội tiếp đường tròn có đường kính AB = 2a, SA vuông góc với mặt phẳng (ABCD) và SA=a\sqrt{3}. Tính góc giữa hai mặt phẳng (SBC) và (SCD).

Giải:

Góc Giữa 2 Mặt Phẳng: Định Nghĩa, Cách Xác Định Và Bài Tập

Ta có ABCD là nửa lục giác đều \Rightarrow AD = DC = CB = a

Dựng đường thẳng đi qua điểm A \perp (SCD)

Trong (ABCD) dựng AH\perp CD tại H \RightarrowCD \perp(SAH)

Trong (SAH) dựng AP\perpSH\Rightarrow CD\perp AP \Rightarrow AP \perp (SCD)

Tiếp tục dựng đường thẳng đi qua A \perp (SBC)

Trong (SAC) dựng đường AQ \perp SC

Vì BC\perp AC, BC \perp SA \Rightarrow BC \perp(SAC) \Rightarrow BC \perp AQ.

\RightarrowAQ \perp (SBC)

=> Góc giữa 2 mặt phẳng (SBC), (SCD) là góc giữa 2 đường thẳng vuông góc lần lượt với 2 mặt phẳng là AP và AQ.

Ta có \DeltaSAC vuông cân tại A \RightarrowAQ= \frac{SC}{2} = \frac{a\sqrt{6}}{2}

Mặt khác \DeltaAQP \perp P \RightarrowCos (PAQ)= \frac{AP}{AQ}=\frac{\sqrt{10}}{5} \Rightarrow arc cost \frac{\sqrt{10}}{5}

Đăng ký ngay để được các thầy cô ôn tập trọn bộ kiến thức về mặt phẳng không gian một cách khoa học và ngắn gọn nhất

Góc Giữa 2 Mặt Phẳng: Định Nghĩa, Cách Xác Định Và Bài Tập

4. Các dạng bài tập tính góc giữa 2 mặt phẳng trong không gian (có lời giải)

Ví dụ 1: Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh đều bằng a. Tính của góc giữa một mặt bên và một mặt đáy.

Giải:

Đáp án: Chọn C

Gọi điểm H là giao điểm của 2 đoạn thẳng AC và BD

+ Do S.ABCD là hình chóp đều nên ta có SH \perp (ABCD)

Ta có: (SCD) \cap (ABCD) = CD. Ta gọi M là trung điểm của đoạn thẳng CD.

+ Tam giác SCD là tam giác cân tại định S; tam giác CHD là tam giác cân tại đỉnh H (theo tính chất đường chéo vuông)

Ta có: SM \perp CD và HM \perp CD

\Rightarrow ((SCD), (ABCD)) = (SM, HM) = \angle SMH = \alpha

Từ giả thuyết đã cho ta có thể suy ra được:

SCD là tac giác đều cạnh a với SM là đường trung tuyến

\Rightarrow SM = a\sqrt{\frac{3}{2}}

\Rightarrow cos \alpha = \frac{HM}{SM} = \frac{\frac{a}{2}}{\frac{a\sqrt{3}}{2}} = \frac{1}{\sqrt{3}}

Ví dụ 2: Cho tứ diện đều ABCD. Góc giữa (ABC) và (ABD) bằng α. Chọn khẳng định đúng trong các khẳng định sau?

Giải

Đặt AB = a. Gọi điểm I là trung điểm của đoạn thẳng AB.

Ta có tam giác ABC là tam giác đều có cạnh a nên CI \perp AB và CI = a\frac{\sqrt{3}}{2}

Tam giác ABD là tam giác đều nên DI \perp AB và DI = a\frac{\sqrt{3}}{2}

Từ đó ta suy ra được: ((ABC), (ABD)) = (CI, DI) = \angle CID = a

Trong tam giác CID ta có:

cos\alpha = \frac{IC^{2} + ID^{2} - CD^{2}}{2.IC.ID} = \frac{\frac{3a^{2}}{4} + \frac{3a^{2}}{4} - a^{2}}{2. \frac{a\sqrt{3}}{2}.\frac{a\sqrt{3}}{2}} = \frac{\frac{a^{2}}{2}}{\frac{3a^{2}}{2}} = \frac{1}{3}

Vậy đáp án đúng là đáp án A

Ví dụ 3: Cho hình chóp S.ABCD có đáy là hình thoi tâm O cạnh a và có góc ∠BAD = 60°. Đường thẳng SO vuông góc với mặt phẳng đáy (ABCD) và SO = 3a/4. Gọi E là trung điểm BC và F là trung điểm BE. Góc giữa hai mặt phẳng (SOF)và (SBC) là?

Giải

Góc Giữa 2 Mặt Phẳng: Định Nghĩa, Cách Xác Định Và Bài Tập

Trên đây là tổng hợp khái niệm và cách xác định góc giữa 2 mặt phẳng cũng như các dạng bài tập thường gặp. Tuy nhiên, nếu các em muốn đạt kết quả tốt nhất thì hãy truy cập Vuihoc.vn và đăng ký tài khoản để ôn tập kiến thức toán 12 và giải bài tập mỗi ngày! Chúc các em đạt kết quả cao trong kỳ thi THPT Quốc Gia sắp tới.

>>> Xem thêm:

Link nội dung: https://iir.edu.vn/goc-giua-2-mat-phang-dinh-nghia-cach-xac-dinh-va-bai-tap-a18063.html