Công thức pitago là một trong những kiến thức hình học quan trọng nhất mà bất cứ học sinh nào cũng cần phải nắm vững. Định lý pitago cho rằng: trong 1 tam giác vuông, bình phương của cạnh huyền (đối diện với góc vuông) bằng với tổng bình phương của hai cạnh góc vuông .Hãy cùng với Dự báo thời tiết 3 ngày tìm hiểu về định lý Pitago ngay sau đây nhé.
Định lý Pytago là một liên hệ cơ bản trong hình học Euclid giữa ba cạnh trong một tam giác vuông. Định lý pitago cho rằng: trong 1 tam giác vuông, bình phương của cạnh huyền (đối diện với góc vuông) bằng với tổng bình phương của hai cạnh góc vuông. Định lý có thể được viết thành một phương trình liên hệ độ dài của các cạnh a, b và c, và thường gọi là công thức Pytago: c2=a2+b2 (trong đó c là độ dài của cạnh huyền, a,b lần lượt là độ dài của 2 cạnh góc vuông). Như thế, trong bất cứ tam giác vuông nào thì bình phương của cạnh huyền cũng bằng tổng bình phương của hai cạnh góc vuông. Theo như định lý cho biết, 2 cạnh góc vuông của tam giác được kí hiệu là a và b, còn cạnh huyền được kí hiệu là c. Ta luôn có phương trình công thức pitago như sau:
a2+b2=c2 (c là độ dài của cạnh huyền, a và b là độ dài của hai cạnh góc vuông hay còn được gọi là cạnh kề). Qua đó, ta có công thức để tính cạnh huyền tam giác vuông như sau: c=√(a²+b²) (c là cạnh huyền, a và b là độ dài của 2 cạnh tam giác vuông)
Chúng ta có thể chứng minh định lý Pitago đơn giản qua hình sau:
Tại hình trên ta có 2 hình vuông lớn có diện tích bằng nhau là: (a+b)2
Trong mỗi hình lại có 4 tam giác vuông bằng nhau và có diện bằng nhau là 1/2(a.b). Do đó diện tích phần khoảng trắng 2 hình sẽ bằng nhau. Như vậy, diện tích của hình vuông c sẽ bằng tổng diện tích của a, b nên ta sẽ có: c2= a2+b2
Nếu như 1 tam giác có bình phương một cạnh bằng tổng bình phương của hai cạnh còn lại thì tam giác đó chính là tam giác vuông. Công thức Pitago đảo rất phổ biến cũng như có nhiều ứng dụng thực tiễn.
Gọi ABC là một tam giác với các cạnh a, b, và c, với a2+b2=c2. Dựng một tam giác thứ hai có cạnh bằng a và b và góc vuông được tạo giữa chúng. Theo như định lý Pitago thuận, cạnh huyền tam giác vuông thứ hai này sẽ bằng c=√(a²+b²) và bằng cạnh còn lại của tam giác thứ nhất. Bởi vì cả hai tam giác đều có ba cạnh tương ứng cùng bằng chiều dài a, b và c, do đó, hai tam giác này phải bằng nhau. Suy ra, góc giữa các cạnh a và b ở tam giác đầu tiên phải là một góc vuông.
Để chứng minh định lý pitago đảo ở trên, chúng ta sử dụng chính định lý Pytago. Hoặc, cũng có thể chứng minh định lý đảo mà không cần dùng định lý thuận.
Một ứng dụng của định lý Pytago đảo đó là cách xác định đơn giản một tam giác có phải là tam giác vuông hay không, hay là tam giác nhọn, tam giác tù. Gọi c là cạnh dài nhất của tam giác và có a + b > c (nếu không thì sẽ không tồn tại tam giác vì đây là bất đẳng thức tam giác). Các phát biểu sau đây là đúng:
Như chúng tôi đã đề cập, nếu như ký hiệu c là chiều dài của cạnh huyền, a và b là chiều dài của hai cạnh kề thì ta sẽ có biểu thức của phương trình Pitago như sau: a =b +c.
Nếu như đã biết chiều dài a, b, chúng ta có thể tính cạnh huyền c bằng công thức: c = √(a +b ).
Nếu như biết được độ dài của cạnh huyền và cạnh kề (a hoặc b) thì công thức để tính độ dài của cạnh kề còn lại sẽ như sau: a = √(c - b ) hoặc b = √(c - a ).
Công thức Pitago cho liên hệ các cạnh của một tam giác vuông theo một cách đơn giản, do vậy, nếu biết được chiều dài của hai cạnh bất kỳ thì chúng ta sẽ tìm được chiều dài của cạnh còn lại. Một hệ quả khác của định lý Pytago là trong bất cứ tam giác vuông nào, cạnh huyền sẽ luôn luôn lớn hơn hai cạnh kia, nhưng sẽ bé hơn tổng của hai cạnh. Chúng ta có thể ứng dụng định lý Pytago để tìm cạnh của một tam giác vuông, hoặc tính khoảng cách của 2 điểm trong không gian thực khi biết được tọa độ của chúng dưới dạng (x, y).
Khi học định lý Pytago, để có thể nắm chắc và áp dụng thuần thục trong quá trình làm bài tập, các bạn cần lưu ý một số điều sau:
- Cắt ngang mà không đi qua góc vuông
- Là cạnh dài nhất của tam giác vuông
- Cạnh huyền còn được gọi là C trong định lý Pitago
Xem thêm: Công thức diện tích hình bình hành - toán lớp 10
Dự báo thời tiết 3 ngày hy vọng rằng, những thông tin về công thức pitago mà chúng tôi giới thiệu đến các bạn hôm nay sẽ giúp cho các bạn đạt được những điểm số cao hơn trong bộ môn hình học. Đừng bỏ lỡ những bài viết tiếp theo của chúng tôi nhé
Link nội dung: https://iir.edu.vn/7-luu-y-khi-hoc-cong-thuc-pitago-ban-khong-nen-bo-qua-a17974.html